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Spinning gas clouds – without vorticity

B Gaffet
CEA DSM/DAPNIA/Service d’Astrophysique, CEN Saclay, 91191 Gif-sur-Yvette Cedex, France

Received 6 March 2000

Abstract. Ovsiannikov and Dyson have considered an ordinary differential reduction of the gas-
dynamical equations for an ideal gas which is adiabatically expanding and rotating. Gaffet has
shown, based on its Painlevé property, the complete integrability of that ellipsoidal gas cloud
model, when there is neither rotation nor vorticity and the gas is monatomic (γ = 5

3 ), and has
conjectured that the integrability might persist in more general cases including rotation. In this
paper we show that the presence of vorticity in general destroys the integrability property, but the
conjecture is otherwise verified, under the simplifying assumption of rotation around a fixed axis.
In a future work we hope to extend the present result to Dyson’s most general spinning gas cloud
without vorticity.

1. Introduction

The equations of gas dynamics for an ideal gas of polytropic index γ , may be written in the
form

div �v = − 1

(γ − 1)

d

dt
ln T

∂t �v = �v� rot �v + T �∇S − �∇
( �v2

2
+

γ T

γ − 1

)

∂tS + �v · �∇S = 0

(1.1)

where �v is the fluid’s velocity, T is its temperature (normalized here in such a way that the
specific enthalpyH = γ T /(γ − 1)) and d/dt denotes the time derivative following the fluid’s
motion.

Ovsiannikov (1965) and Dyson (1968) have noted that the above equations are manifestly
compatible with an ansatz which makes the entropy S a quadratic function and the velocity
�v a linear function of coordinates (with time-dependent coefficients), and the temperature T
a function of time only. The gas-dynamical equations are thereby reduced to an ordinary
differential system of order 18. Because the density ρ of the fluid is related to the entropy as

S = − ln ρ +
1

(γ − 1)
ln T (1.2)

the ansatz describes an ellipsoidally stratified fluid, with a Gaussian density profile, in a state
of combined expansion and rotation.

In a Lagrangian formalism, the instantaneous configuration of the cloud is described by
the matrix F which relates Eulerian and Lagrangian coordinates (xi and αi , respectively)

xi = Fij (t) αj (1.3)
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and the equations governing the evolution of F assume a very simple form (Dyson 1968)

FT F̈ = T (1.4)

(where the subscript T denotes transposition, and a dot represents differentiation with respect
to time). Dyson has shown that they are the Hamiltonian equations of motion of a point mass
in nine-dimensional Euclidean space (the space of the nine coefficients Fij ) in the potential
T/(γ − 1)—the specific thermal energy of the fluid. Let us note that these equations clearly
admit further reductions, such as those where the matrix F is restricted to being diagonal,
block-diagonal or symmetric.

For a monatomic gas, with polytropic index γ = 5
3 , additional first integrals are present

(Anisimov and Lysikov 1970, Gaffet 1983, 1996) which allow separability of the radial part of
the point-mass motion, thereby reducing the problem to one of Hamiltonian motion on a unit
hypersphere (in general, the 8-sphere). Gaffet (1996) has shown that when there is no rotation
(that is, when the matrix F is diagonal), the resulting point-mass motion on the unit 2-sphere
possesses the Painlevé property, a second integral (cubic in the momenta) and is a completely
integrable Hamiltonian motion. In the same paper it was conjectured that the property of
complete integrability might be preserved when rotation is included, i.e. when the matrix F
becomes unrestricted.

In this paper, as a first step towards a fully general treatment, we considered the case
of rotation of a tri-axial ellipsoid around a fixed axis O�z, where the matrix F assumes the
block-diagonal form

F =

 F11 F12 0
F21 F22 0
0 0 F33


. (1.5)

The corresponding point-mass motion thus takes place in five-dimensional Euclidean space
and after separation of its radial part reduces to motion on the unit 4-sphere in the potential
3T/2. In this case the antisymmetric constant matrices of angular momentum (Jij ) and
vorticity (Kij ) (Dyson 1968) have for a unique non-zero component J12 and K12. When
these constants of motion are taken into account, the problem can be reduced to one of motion
on the 2-sphere, in a modified potential that includes a centrifugal potential arising from
the angular momentum constant and another analogous potential arising from the vorticity
constant. The Painlevé analysis yields a negative result (the equations do not possess the
Painlevé property) in the seemingly simplest case where F is assumed to be symmetric (i.e.
F12 = F21). However, surprisingly, it is found that the Painlevé property is restored for non-
symmetric F when there is no vorticity (i.e. when K12 = 0, J12 �= 0). Owing to the existence
of Dedekind’s duality (Dedekind 1860; which exchanges the roles of F and FT , of Jij and
Kij ), the Painlevé property also holds in motions with vorticity but without angular momentum
(i.e. when J12 = 0,K12 �= 0).

Let us note here that in the Eulerian formalism where the velocity field is described by a
matrix Aij

vi = Aij (t) xj (1.6)

the (hidden) higher degree of symmetry of motion without vorticity becomes manifest, as, in
those cases, the matrix A is symmetric.

According to a well verified conjecture (Ablowitz and Segur 1977), the Painlevé property
entails complete integrability of the corresponding motions. That is confirmed in this paper
by obtaining an explicit second integral of the motion (of the sixth degree in the momenta),
generalizing the integral obtained earlier in the absence of rotation.
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We also study in detail the case where the new second integral I6 vanishes, and show,
using a particular example, how to perform the separation of variables in such cases. The
resulting separable form of the differential system essentially coincides with that obtained in
the diagonal case (Gaffet 1998b),

�′
1(u) = m1

(�1 − �2)

�′
2(u) = − m2

(�1 − �2)

(1.7)

wherem1 = µ(�1),m2 = µ(�2) andµ2(λ) is a sixth-degree polynomial in λ. The independent
variable u is the variable appropriate to the Painlevé expansions and is, in all cases, the
well known Clebsch potential (Clebsch 1859, Seliger and Whitham 1968), sometimes called
‘thermasy’ (van Danzig 1939)

u =
∫
T dt.

2. The reduction of F to the principal axes

2.1. The canonical decomposition of F

The most general 3 × 3 matrix F can be reduced (Dyson 1968) to the canonical form

F = O1DO2

whereD is diagonal andO1 andO2 are orthogonal matrices. The diagonal elementsD1,D2,D3

ofD, are the lengths of the principal axes of the ellipsoidal cloud, while the rotation matrixO1

determines their orientation in space, and the matrix O2 plays an analogous role with respect
to the space of Lagrangian coordinates. Dyson introduced the angular velocities A,B (or,
equivalently, �ω, �ϕ) which are the antisymmetric matrices

A =

 Oω3 − ω2

−ω3Oω1

ω2 − ω1O


 B =


 Oϕ3 − ϕ2

−ϕ3Oϕ1

ϕ2 − ϕ1O


 (2.1)

defined by

Ȯ1 = −O1A

Ȯ2 = BO2.
(2.2)

The reformulation of the equations in terms of D,O1,O2 instead of F , presents several
advantages: first, the potential energy 3T/2 has a very simple expression in terms of D

T = 1

(D1D2D3)2/3
(2.3)

(the constant numerator has been chosen as equal to unity, without loss of generality). Further,
the equations of motion do not involveO1,O2 directly, but merely the angular velocitiesA and
B. (In the block-diagonal case, as we shall see, the latter can be obtained explicitly without
integration, using the first integrals J and K of angular momentum and vorticity). The result
(Dyson’s equation (35)) is a sixth-order differential system for three unknowns D1,D2,D3,

D̈1 +
[
(ω2

1 + ϕ2
1)− ( �ω2 + �ϕ2)

]
D1 + 2ω3ϕ3D2 + 2ω2ϕ2D3 = T

D1
(2.4)
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(together with the two equations that can be deduced by circular permutation of the indices),
which must be completed by the differential equations governing the evolution of �ω and �ϕ,

(D2ω̇3 −D1ϕ̇3) = 2(Ḋ1ϕ3 − Ḋ2ω3) +D1ϕ1ϕ2 +D2ω1ω2 − 2D3ϕ1ω2 (2.5a)

(D2ϕ̇3 −D1ω̇3) = 2(Ḋ1ω3 − Ḋ2ϕ3) +D1ω1ω2 +D2ϕ1ϕ2 − 2D3ω1ϕ2 (2.5b)

(together with the equations deducible by circular permutation).

2.2. The angular momentum and vorticity constants

The equation of motion (1.4) immediately entails constancy of the antisymmetric matrices

J ≡ FḞT − ḞFT

K ≡ FT Ḟ − ḞT F.
(2.6)

In terms of the matrices D,A,B the above definitions become

J ≡ O1jO1T

K ≡ O2T kO2

(2.7)

where

j ≡ D2A + AD2 − 2DBD

k ≡ D2B + BD2 − 2DAD.
(2.8)

Since the latter may be viewed as 2-forms (being antisymmetric 3×3 matrices), they may
equivalently be represented by their duals, �j and �k, which are 3-vectors (in the same way that
�ω and �ϕ are the duals of A and B), and the duals of J and K will similarly be denoted as �J
and �K . The analogue of the rotation formula (2.7) for the duals then reads (3-vectors being
treated as column vectors)

[ �J ] = O1[ �j ]

[ �K] = O2T [�k].
(2.9)

Although �j and �k themselves do not, the scalars �j 2 and �k2 obviously remain constant, and play
the role of first integrals of the system (2.5) governing the evolution of A and B. In particular,
in the case where F is block-diagonal (which is the subject of the next section), j3 and k3 being
the only non-vanishing components of �j and �k, become constants of the motion. In such cases
the distinction between �j and �J , �k and �K , disappears altogether, and we can write

j3 = J3 = J12

k3 = K3 = K12.
(2.10)

3. The block-diagonal case

WhenF assumes the block-diagonal form (1.5),O1 andO2 become matrices of rotation around
the third axis, and the angular velocity matrices are accordingly restricted to their components
ω3, ϕ3: the remaining components ω1, ω2, ϕ1, ϕ2 all vanish identically. In addition, as we
show below, ω3, ϕ3 are then exactly calculable in terms of D1,D2. Consequently, the system
(2.4), which now reads

D̈1 − (
ω2

3 + ϕ2
3

)
D1 + 2ω3ϕ3D2 = T/D1

D̈2 − (
ω2

3 + ϕ2
3

)
D2 + 2ω3ϕ3D1 = T/D2

D̈3 = T/D3

(3.1)
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constitutes a closed system for three unknowns only: D1,D2 and D3. The differential system
(2.5) determining ω3, ϕ3, becomes

(D1ϕ̇3−D2ω̇3) = 2(Ḋ2ω3−Ḋ1ϕ3)

(D1ω̇3−D2ϕ̇3) = 2(Ḋ2ϕ3−Ḋ1ω3)
(3.2)

and is exactly integrable (without any restriction on the functions D1,D2) as

(ω3 + ϕ3) = α/(D1 −D2)
2

(ω3 − ϕ3) = β/(D1 +D2)
2.

(3.3)

That integrability property arises as a consequence of the laws of conservation of angular
momentum (J12) and vorticity (K12), in terms of which the integration constants α, β are
given by

α = J12 +K12

β = J12 −K12.
(3.4)

Thus the system (3.1) may be rewritten as

D̈1 = T

D1
+

α2/2

(D1 −D2)
3 +

β2/2

(D1 +D2)
3

D̈2 = T

D2
− α2/2

(D1 −D2)
3 +

β2/2

(D1 +D2)
3

D̈3 = T

D3
.

(3.5)

We have already noted that the present problem represents Hamiltonian motion in five-
dimensional Euclidean space. The above formulation is even simpler: equations (3.5) are the
equations of motion in three-dimensional Euclidean space (D1,D2,D3) in a potential Vs :

2V s = 3T +
α2/2

(D1 −D2)
2 +

β2/2

(D1 +D2)
2 . (3.6)

Then, by the usual time-coordinate transformation (Gaffet 1983, 1996):

t∗ =
∫

dt

R2
(3.7)

whereR ≡
√
D2

1 +D2
2 +D2

3 is the radial coordinate, and is a given (quadratic) function of time
(Anisimov and Lysikov 1970), the problem may be further simplified to that of Hamiltonian
motion on a unit 2-sphere

(
R2 = 1

)
, in the same potential Vs .

It is convenient to introduce, as coordinate system over the sphere, the ratios of ellipsoid
axes

H ≡ D1/D3

K ≡ D2/D3

(3.8)

in terms of which the potential reads

Vs = δ

2

[
3

(HK)2/3
+

α2/2

(H −K)2
+

β2/2

(H +K)2

]
(3.9)

where δ = (
1 +H 2 +K2

)
. (Note that on the sphere R2 = 1 and D3 = 1/

√
δ.)
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The spherical equations of motion in coordinatesH,K , in an arbitrary potentialVs(H,K),
have been determined by Gaffet (1996) (see equation (3.29) therein) and read (now using the
dot to denote derivation with respect to t∗)

− d

dt∗

(
Ḣ

δ

)
= (

1 +H 2
)∂V s

∂H
+HK

∂V s

∂K

− d

dt∗

(
K̇

δ

)
= HK

∂V s

∂H
+

(
1 +K2

)∂V s

∂K

(3.10)

and in the present case they take the form

d

δ dt∗

(
Ḣ

δ

)
=

(
1 −H 2

)
/H

(HK)2/3
+

α2/2

(H −K)3
+

β2/2

(H +K)3
(3.11a)

d

δ dt∗

(
K̇

δ

)
=

(
1 −K2

)
/K

(HK)2/3
− α2/2

(H −K)3
+

β2/2

(H +K)3
. (3.11b)

With regard to performing the Painlevé test, our earlier results strongly suggest introducing
the new independent variable u

du = T dt = δ

UV
dt∗ (3.12)

and the new unknowns U and V

H 2 = U 3 K2 = V 3. (3.13)

4. The Painlevé analysis

In terms of the new variablesU , V , the right-hand side of equation (3.11a), after multiplication
by H , reads

(
1 − U 3

)
UV

+

(
α2 + β2

)
U 3

(
U 3 + 3V 3

)
+

(
α2 − β2

)
(UV )3/2

(
V 3 + 3U 3

)
2
(
U 3 − V 3

)3 .

Owing to the presence of a radical, (UV )3/2, a Painlevé property of the system appears
impossible unless its coefficient

(
α2 − β2

)
vanishes. In view of the identification (see (3.4))

of α + β with 2J 12, and of α − β with 2K12, that first necessary condition may be restated

J12K12 = 0 (4.1)

i.e. the fluid motion must have either no vorticity or no angular momentum if the system is to
pass the Painlevé test. We accordingly assume α2 = β2 from now on, and proceed with the
Painlevé analysis under that restricting condition.

The equation of motion now reads

U ′′(u) = U ′2

2U
+
U ′V ′

V
+

2V

3U

(
1 − U 3

)
+

2α2

3

V 2U 3
(
U 3 + 3V 3

)
(
U 3 − V 3

)3 (4.2)

together with another equation obtained by exchanging the roles ofU andV (without changing
u and α2).
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That system admits an integral of energy, Ê = (Ks + Vs), where Ks is the kinetic energy
(see Gaffet 1996, equation (4.3) therein)

Ks = 9

8

{(
1 + V 3

)
U ′2

UV 2 − 2U ′V ′ +

(
1 + U 3

)
V ′2

U 2V

}

Vs = δ

2

{
3

UV
+
α2

(
U 3 + V 3

)
(
U 3 − V 3

)2

} (4.3)

and δ ≡ (
1 + U 3 + V 3

)
. As in our earlier work, it will be convenient to introduce the rescaling

m ≡ 2
9 Ê.

In addition to the already manifest symmetry of the system under the exchange ofU andV ,
it is worth noticing the following discrete symmetry (with the tilde here denoting transformed
quantities)

Ũ = Ue2iπ/3

Ṽ = V e−2iπ/3
(4.4)

which leaves unaltered U 3, V 3 and the product UV .
The Painlevé analysis (Ince 1956, Weiss et al 1983) consists of an examination of the

properties of the system under study in the neighbourhood of singularities of all types. The
system is said to possess the Painlevé property if the only movable singularities are poles, and
hence if each resonance at a movable pole is free of logarithmic singularity. Thus the Painlevé
test requires a limited development of the solution near each singularity, until the point where
the last resonance associated with that singularity is reached.

In the present case, singularities can occur when U → 0, when V → 0, when
U → V e2ikπ/3 and when U → ∞ or V → ∞. Owing to the discrete symmetry (4.4),
the cases U → V e±2iπ/3 are not distinct from those where (U − V ) → 0; therefore we need
only examine the three cases

(a) U → ∞;

(b) U → 0;

(c) (U − V ) → 0.

Case (a). U → ∞. Then V → ∞ as well. The α2 potential term is then completely
negligible and the Painlevé expansion coincides precisely with that already obtained by Gaffet
(1996) (see appendix A therein). That singular branch was found to pass the Painlevé test.

Case (b). U → 0. Then V tends towards some finite limit V0. The α2 terms are again
negligible. The functions U and V turn out not to be singular at all. A Painlevé expansion
may still be performed, and proceeds as in the diagonal case. (It was not done explicitly in
our earlier work, since U is not properly speaking singular when U → 0, but it is essentially
equivalent to that of case (a), owing to the existence of a symmetry Ũ = 1/U , which holds in
that context.)
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Case (c). Unlike the two preceding cases, the α2 terms are dominant here. That branch passes
the Painlevé test too. In fact, surprisingly, the symmetrical combinationsUV andU 3 +V 3 both
satisfy the Painlevé criterion in case (c), even in the presence of vorticity. The breakdown of the
Painlevé property in such cases

(
α2 �= β2

)
paradoxically takes place in branch (b) (U → 0) in

spite of the fact that the α2 and β2 terms are then negligible up to the last resonance, through the
occurrence at higher orders of terms of half-integer degree, arising from the

(
α2 − β2

)
(UV )3/2

terms in the equations of motion.

5. The second integral

5.1. Determination of the second integral

Having shown that our system passes the Painlevé test, one can safely conclude that it is
completely integrable, and thus it seems likely that it should present a second integral obtainable
in closed form, generalizing the integral I2 (cubic in the momenta) obtained earlier in the
diagonal case. Such a generalization, however (if restricted to being cubic) does not appear
to exist. In view of the fact that I2 appears in some fundamental formulae (Gaffet 1998a,
equation (2.39) therein) only through its square, we considered the possibility that the correct
generalization might be of degree six in the momenta. We further remarked that α and β have
the physical meaning of momenta and therefore should not appear in the highest (sixth) degree
terms in the generalized integral, which would otherwise be in effect of a degree higher than
six. This means that the sixth-degree terms in the new integral (denoted I6 hereafter) must
coincide with those in I 2

2 (which are, of course, known). It is well known that from knowledge
of the highest degree terms in an integral of the motion, the lower degree ones may be deduced
in sequence through an overdetermined integration process that merely involves quadratures,
until the degree zero is finally reached, provided, of course, that a solution does exist.

In the present case the overdetermined system is indeed compatible, and yields the second
integral I6 of the spherical motion. Before giving its expression, it will be convenient to
introduce as before (see Gaffet 1998b), the 3-vector representation of the velocity variables
U ′(u), V ′(u)

�ξ ≡ (ξ, η, ζ )

2ξ/
√

3 = V ′/U 2

2η/
√

3 = −U ′/V 2

2ζ/
√

3 = (VU ′ − UV ′)

(5.1)

whose components manifestly satisfy the linear constraint(
U 3ξ + V 3η + ζ

) = 0. (5.2)

We also introduce a new variable θ

θ ≡ ξη − 1 + f (U, V ) (5.3)

where

f (U, V ) ≡
(
α2/3

)
UV(

U 3 − V 3
)2 . (5.4)

In terms of these the new integral I6 admits the reasonably compact form

I6 ≡ (
ξ + η − θζ

)2
+ 4f

(
U 3θ + 1

)(
V 3θ + 1

)
. (5.5)
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As a consequence of the symmetries of the problem, the coordinates (U, V )merely occur
through their symmetrical combinations (π,X)

π ≡ UV

X ≡ (
U 3 + V 3

)
.

(5.6)

Conversely

2U 3 ≡ X +
√
X2 − 4π3

2V 3 ≡ X −
√
X2 − 4π3

(5.7)

and the sum (U + V ) is thus given by the celebrated Cardan formulae. In terms of the new
variables the expressions of f and of I6 become

f ≡ α2π/3

X2 − 4π3 (5.8)

I6 ≡ (ξ + η − θζ )2 + 4f
(
π3θ2 +Xθ + 1

)
. (5.9)

We note that the factor (ξ + η − θζ ) in the above expression may be rewritten as

(ξ + η − θζ ) ≡ I2 − f ζ (5.10)

where

I2 ≡ (ξ + η + ζ )− ξηζ (5.11)

is the second integral valid in the non-rotating case; thus I6 manifestly reduces to I 2
2 when

α2 = 0.
In terms of the quantities P1, P2, P3

P1 ≡ (
U 3θ + 1

)
P2 ≡ (

V 3θ + 1
)

P3 ≡ (θ + 1)

(5.12)

we can also write

I6 ≡ [(ξ + η + ζ )− ζP3]2 + 4P1P2(P3 − ξη). (5.13)

The existence of the second integral ensures that the Hamiltonian considered is completely
integrable (Liouville integrable), and that the integration reduces to quadratures. In the
following sections we will consider in more detail the case where the second integral vanishes.

5.2. Special values of m, deduced from the Painlevé expansions

The presence of a second integral makes it possible by fixing the values of m and I6 to reduce
the phase space to the dimension two, and the equation of motion to the second-order form

U ′(u) = U ′(U, V )

V ′(u) = V ′(U, V )
(5.14)

whereU ′(U, V ), V ′(U, V ) are given implicit functions. Such a Hamiltonian system is solvable
by separation of variables, at least in principle. We shall assume that the separability holds
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with respect to the independent variable u, meaning that, in its separable form, the general
solution of the equations of motion (5.14) (see Gaffet (1998b), equation (4.3) therein) reads

u =
∫
�1 d�1

m1
+

∫
�2 d�2

m2

3 =
∫

d�1

m1
+

∫
d�2

m2

(5.15)

where 3 is the integration constant, �1, �2 are the new variables which make the system
manifestly separable, and m1 = µ(�1),m2 = µ(�2) are functions of �1 and �2, respectively.
In differential form, that is the second-order system

�′
1(u) = m1

(�1 − �2)

�′
2(u) = −m2

(�1 − �2)
.

(5.16)

In simple cases the function µ may turn out to be algebraic, but its form remains unknown
until the separation of variables has been completed.

Consider now a Painlevé expansion which involves three integration constants: a0, a1, a2

let us say (in addition to the arbitrary constant translations of the independent variable u);
whenm and I6 are kept fixed there only remains one independent integration constant, a0 say,
to which, for example, a2 must be algebraically related:

F(a0; a2) = 0.

The algebraic genus of the above equation and of the equationµ = µ(�)must be related. Thus
the Painlevé analysis can serve to identify those special values of m and I6 which make the
function µ of lower genus. We now proceed with the determination of F(a0; a2), choosing
(arbitrarily) the singular branch for which V → 0.

Its Painlevé expansion reads

U = a0
[
1 + 2

3a2u
2 + · · ·]

V = ka
1/2
0 u

[
1 + 2

3a1u + · · ·] (5.17)

where we have introduced for conciseness the symbol k = 2i/
√

3, and a0, a1 and a2 are
arbitrary constants. The integral of energy is found to be the following combination of
constants:

9m = −3a2
2 +

(
a3

0 + 1
)

a3
0

[
α2 − 8

k
a1a

3/2
0

]
(5.18)

and the integral I6 may be calculated similarly. Choosing I6 = 0 for simplicity selects the
following value of a1:

8a1a2a
3/2
0 = 3k(1 − a3

0)− 4αa1/2
2 . (5.19)

By combination of (5.18) and (5.19) the expected relation F(a0; a2) = 0 is obtained in the
form

(z + 1)

[
3(z− 1) +

4αx

k
+ α2x2

]
− 3zx2(x4 + 3m) = 0 (5.20)
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where z ≡ a3
0 and x ≡ a

1/2
2 . The corresponding curve in the (z, x)-plane has a double point

(and hence a lower genus) whenever the discriminant D12 of that second-degree equation for
z has a double root,

D12 ≡ x12 + 6m̂x8 − 4rx7 + 9m̂2x4 − 12m̂rx3 + 8r2x2 − 8rx + 4 (5.21)

where m̂ ≡ (
m− 1

9α
2
)

and r ≡ kα/2.
One double root occurs at x = 1/r whenever

m̂ = (2r6 − 1)

3r4

m = (r6 − 1)

3r4

and hence

m = − (α
6 + 27)

9α4
. (5.22)

This type of solution is unphysical, having a negative energy.
Another double root x is present whenever

m = 1
3τ

2(2τ 3 + 1)

α2 = 6

τ
(τ 3 − 1)2

(5.23)

where the parameter τ = ix2. The case τ = 1 (α2 = 0,m = 1) represents a spherically
symmetric expanding cloud (U ≡ V ≡ 1).

For such values of m and α2, the algebraic relation between m1,m2 and �1, �2, having a
lower genus, must be simpler. In section 6.2 we investigate in detail the case where τ = 1

2 ,
i.e. the case

I6 = 0 m = 5
48 α2 = 147

16 .

6. The separation of variables

6.1. The two-dimensional phase space

In terms of the new variables the definition (4.3) of the integral of energy reads

3πm = (
U 3ξ 2 + V 3η2 + ζ 2

)
+ (1 +X)(1 +Xf ) (6.1)

where f (U, V ) is given by equations (5.4) and (5.8). Together with the definition (5.9) of the
second integral and the linear constraint (5.2), the above equation determines a two-dimensional
algebraic surface (S), the phase space, in a space of coordinates (U,V, ξ, η, ζ ). It is possible
to reduce the dimensionality of the embedding space to three, through the elimination of ξ and
η.

First, the constant I6 may be viewed as fixing the sum (ξ + η):

(ξ + η − θζ ) = 7(π;X; θ)
≡ {

I6 − 4f
(
π3θ2 +Xθ + 1

)}1/2
. (6.2)
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Together with (5.2) that constitutes a linear system, whose solution reads

ξ = −
(
ζP 2 + V 37

)
(
U 3 − V 3

)

η =
(
ζP 1 + U 37

)
(
U 3 − V 3

) .

(6.3)

The definition (5.3) of θ thus entails a second-degree equation for ζ ,

ζ 2
(
π3θ2 +Xθ + 1

)
+ ζ7

(
2π3θ +X

)
+

{
π372 +

(
X2−4π3

)
(θ + 1 − f )

} = 0 (6.4)

and another second-degree equation results from the expression (6.1) of the energy constant

ζ 2
[
X

(
π3θ2 +X + 1

)
+ 4π3(θ − 1)

]
+ 2ζπ37(Xθ + 2)

+
{
π3X72 +

(
X2−4π3

)
[(1 +X)(1 +Xf )− 3mπ ]

} = 0. (6.5)

The result of eliminating ζ between that pair of equations constitutes the equation of the surface
(S), in a space of coordinates (π;X; θ); it is a quartic equation for the variable X, and one of
sixth degree for θ ,

X2π6θ6 +
5∑
n=1

πnθn
[
An0 + 1

3α
2An1 + 1

9α
4An2

] = 0 (6.6)

where

A50 = 6πX(mπ + 1)

A51 = −2π2(X + 2)

A52 = 0

A40 = 3
[
2mX2 + 3π2(mπ + 1)2

]
A41 = −2

[
X(X + 1) + 3π2(mπ − 1)

]
A42 = π4

A30 = 2X3 + 2X
{(

9m2π2 + 12mπ − 1
) − π3(4 + I6)

} − 4π3I6

A31 = −2π
{
X(6mπ − 1) + (3mπ − 1) + I6

(
π3 − 4

)}
A32 = 2π2(X + 1)

A20 = 3X2
[
3m2 + 2π

(
mπ + 1 − 1

2I6
)] − 3πXI6(mπ + 1)

+6π
{
(mπ + 1)

(
3mπ − 1 − 4π3

)
+ π3I6(1 −mπ)

}
A21 = −2X2

(
3m + π2

) − 2X
(
3m + 4π2 − 1

2π
2I6

) − 2π2
{
3(mπ + 1)+π3(4 − I6)− 1

2I6
}

A22 = (X + 1)2

A10 = 6m
{
X3 +X

[
(3mπ − 1)− π3(4 + I6)

]−2π3I6
}

A11 = −2X3 − 6X2 − 2X
[
3(mπ + 1) + π3(4 − I6)

] − 2
[
(3mπ + 1)+π3(4 − I6)

]
A12 = 0
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A00 = X4 + I6X
3 +X2

[
3mπ(2 − I6) + 2(I6 − 1) + 2π3(I6 − 4)

]
+I6X

[
(1 − 3mπ) + π3(I6 − 4)

]
+

{
(3mπ − 1)2+2π3(I6 − 4)

(
3mπ − 1 + 1

2I6
)

+ π6(I6 − 4)2
}

A01 = π(I6 − 4)(X + 1)2

A02 = 0.

The most noticeable thing about equation (6.6) is that the denominators
(
U 3 − V 3

)2
, or(

X2 − 4π3
)

which appear in the function f , have disappeared altogether: the surface (S)
remains perfectly regular in these coordinates as

(
U 3 − V 3

) → 0, in spite of the divergence
of the potential terms. As a result the polynomial dependence onX does not exceed the fourth
degree.

In the following we shall assume, unless otherwise stated, a vanishing second integral,
I6 = 0, and furthermore we choose for definiteness the case

m = 5
48 α2 = 147

16

which satisfies the parametric representation (5.23), with the value τ = 1
2 for the parameter.

6.2. The separation of variables (case: I6 = 0)

Here we illustrate the method of separating the variables, with the case where the constants
are m = 5

48 and α2 = 147
16 . The equation of the phase space (6.6) has the remarkable property

of being decomposable into a pair of second-degree equations forX. Choosing the section by
a plane π = 1 as an example, the second-degree equations read(

X2 − SX + P
) = 0 (6.7)

where

4S = θ
(
11 − 4θ2

)
+ 14

√
θ + 1

16P = (
4θ2 − 49θ − 75

)
+ 56

(
θ2 − 2θ − 1

)√
θ + 1.

Whatever the value of π , the discriminant
(
S2 − 4P

)
has a double root, as predicted from the

Painlevé analysis

θ2 = (4π − 1)

4π2 (6.8)

and, most remarkably, its roots come in pairs with opposite signs (θ i and −θ i). Thus in our
example (π = 1), the discriminant reads

16
(
S2 − 4P

) = Z6(θ)− 28
√
θ + 1Z3(θ)

where

Z6(θ) ≡ (
16θ6 − 88θ4 + 105θ2 + 392θ + 496

)
Z3(θ) ≡ (

4θ3 + 8θ2 − 27θ − 8
)
.

Its roots are given by the equation : = 0, where

: ≡ Z2
6 − 784(θ + 1)Z2

3
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turns out unexpectedly to be even in θ ,

:(θ) ≡ 16
(
4θ2 − 3

)2(
16θ8 − 152θ6 + 457θ4 − 3312θ2 + 21 760

)
. (6.9)

An analysis of that symmetry leads to the consideration of new variables �1, �2,(
�2

1 + �2
2

) = 4π

�1�2 = 2πθ
(6.10)

or, equivalently,

(�1 + �2) = 2
√
π(1 + θ)

(�1 − �2) = 2
√
π(1 − θ).

(6.11)

The solutions of the second-degree equation (6.7) for X then assume the form

−16X = �1�2
(
�2

1�
2
2 − 11

)
+ 14(�1 + �2)±m1m2 (6.12)

where

m1 = µ(�1)

m2 = µ(�2)

and

µ2(λ) ≡ (λ− 1)2ν(λ) ≡ (
λ6 + 11λ2 − 28λ + 16

)
ν(λ) ≡ (

λ4 + 2λ3 + 3λ2 + 4λ + 16
)
.

The separation of variables is thus completed, and the separable form of the equations of
motion turns out to be

i
√

3�′
1(u) = −m1

(�1−�2)

i
√

3�′
2(u) = m2

(�1−�2)
.

(6.13)

Since ν(λ), having no real roots, is definite positive, the above system cannot have real
solutions: in general, �1 and �2 must be complex and, if the corresponding point (π;X; θ) in
phase space is to be real, �2 has to be either �∗

1 or −�∗
1.

It seems clear that there is nothing special about the case that we have considered, beyond
the fact that the sixth-degree polynomial µ2 then has a double root: it is to be expected that
the separable form (6.13) still holds, though with a different form of µ2(λ), whenever I6 = 0.

In the present case, owing to the presence of a double root, the system (6.13) turns out to
be solvable by elliptic functions.

Consider the elliptic function λ(u) defined by

λ′(u) = i
√

1
3ν(λ).

Let �1 = λ(u1), �2 = λ(u2), then

d�1√
ν(�1)

= i√
3

du1
d�2√
ν(�2)

= i√
3

du2.

We have, from (6.13) du1 + du2 = du along each trajectory, i.e. u1 + u2 = u (the integration
constant is immaterial); therefore λ, �1 and �2 are algebraically related (see Abramowitz and
Stegun 1972, Goursat 1949); that is to say, there exists some definite algebraic combination
λ(�1, �2) which is elliptic. The functions �1 and �2 themselves may involve the ζ and σ
functions of the elliptic theory.
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7. Singular lines and special solutions

7.1. Undeformable ellipsoids

The simplest solutions of all are those where the equivalent point mass remains motionless at
a point on the unit sphere which is an extremum of the potential Vs . Then U ′ = V ′ = 0, and
equations (4.2) reduce to a pair of algebraic equations for U and V (equivalently, π and X),

(X − 2) = α2πX

(X2 − 4π3)(
X2 − 4π3

)2 = α2π
(
X2 + 4π3

)
.

(7.1)

The locus of the extrema as α2 varies is the curve

4π3 = X2/(X − 1). (7.2)

Taking X as the parameter, we have

α2 = (4X)1/3(X − 2)2

(X − 1)2/3

α2π = X(X − 2)2/(X − 1)

(7.3)

and using

f (U, V ) = (X − 2)

3X

θ = (f − 1) = −2(X + 1)

3X

(7.4)

the corresponding values of the integrals of the motion are

m = (X + 1)2

9π
27

4
I6 = (X − 2)2(1 − 5X)

X(X − 1)
.

(7.5)

The spherically symmetric expanding cloud corresponds to the value X = 2 of the parameter.
Let us also indicate as an example the solution when X = 3,

α2 = 1.442 249

m = 1.709 333

I6 = − 28
81

(7.6)

and

U = 1.368 098

V = 0.760 210

which describes a tri-axial ellipsoidal cloud expanding and rotating, without changing shape,
around one of its axes.

Finally, let us note that similar stationary solutions to the equations of motion (3.11) also
exist in the presence of vorticity (i.e. when α2 �= β2).
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7.2. The singular lines of the first type

The pair of second-degree equations (6.4) and (6.5) may be written, symbolically,

Aζ 2 + Bζ + C = 0

aζ 2 + bζ + c = 0.
(7.7)

They constitute a representation of the surface (S) (the two-dimensional phase space) embedded
in the four-dimensional space (π,X, θ, ζ ). Equation (6.6), which is the result of the elimination
of ζ , may be written in determinant form∣∣∣∣∣∣∣∣

A B C 0
0 A B C

0 a b c

a b c 0

∣∣∣∣∣∣∣∣
= 0. (7.8)

A special case occurs when equations (7.7) have their two roots in common, i.e. when their
coefficients are proportional.

A

a
= B

b
= C

c
. (7.9)

These conditions determine a locus where two sheets of the surface (S) intersect, each being
associated with a different choice of ζ .

The first of the pair of conditions (7.9) determines a surface (@), defined (independently
of I6, m and α2) by

(X + 1) = π3θ(θ − 2). (7.10)

On that surface (@) one has

A

a
= B

b
= θ

2δ
(7.11)

so that its intersection with (S) is simply given by

C

c
= θ

2δ
. (7.12)

As suggested by the form of (6.6), it will be convenient to introduce a new variable ρ in place
of θ ,

ρ ≡ πθ (7.13)

then (7.12) assumes the form of a bi-quadratic equation for ρ,

(πρ2 − 1)(ρ2 − 4π2 + 3m)− 1
3α

2πρ2 = 0 (7.14)

while (7.10) may be rewritten as

(X + 1) = πρ(ρ − 2π). (7.15)

These are the equations of a line (L1) where the surface (S) intersects itself.
A special case occurs at the intersection (L0) of (@) with the plane θ = 1, where the

coefficients A,B, a, b all vanish identically. On (L0) both roots ζ become infinite, and the
pair of conditions (7.9) is satisfied without the need to introduce the additional constraint
(7.12).

Both lines are generic: they exist independently of the values of I6, m and α2. In the
particular case studied in section 6.2, the equation of (L0) is simply

(L0) : �1 = �2.
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7.3. Singular lines of the second type

Other non-generic singular lines on the surface (S) should appear when I6, m or α2 take the
special values which make the curve F(a0; a2) = 0 (see section 5.2) have a double point. In
particular, when I6 = 0 and m and α2 satisfy the relation (5.23), we find that there exists a
singular line (L2) represented by the equations

(L2) :



π = (ρ2 + τ 2)

2τ
(X + 1) = − 1

2 (ρ
3 + 3τ 2ρ − 2τ 3)

where τ is the arbitrary parameter in equation (5.23). Along (L2) equations (7.7) have only
one root ζ in common, and equation (7.8) has a double root.

In the particular case where τ = 1
2 , (L2) is the locus defined by

�1 = 1 (or �2 = 1)

i.e. �1 is the double root of the polynomial µ2.

7.4. The solutions of minimal energy

In the case studied in section 6.2 (τ = 1
2 ), the separable formulation (6.13), where m2

1 ≡
(�1 − 1)2ν(�1), manifestly admits the exact solution

�1(u) = 1

since that is a double root of m2
1. (In contrast, the simple roots of ν(�1) merely constitute

extrema of �1(u).) That result may be extended to arbitrary values of τ , thus showing that
the singular line (L2) constitutes a trajectory, a particular solution to the equations of motion.
When τ = 1 it is a minimal energy solution, as m = 1 is the minimum possible value of the
energy associated with the values I6 = α2 = 0 (see Gaffet 1996, p 128). Since minimal energy
solutions must be represented by singular lines (isolated real lines where the complex surface
(S) intersects itself) we conclude, by continuity, that τ > 1 determines the minimal possible
energy m(α2; I6 = 0) (the cases τ < 1, including our example τ = 1

2 , being unphysical), at
least in some neighbourhood of τ = 1. However, as no singular trajectory of another type is
encountered in the range 1 < τ < ∞, we conclude that this entire range corresponds precisely
to the physical minimum of the energy.

8. Conclusion

The ordinary differential equation (ODE) reduction of the equations of gas dynamics proposed
by Ovsiannikov (1965) and Dyson (1968), possesses special symmetries in the case of a
monatomic gas (Anisimov and Lysikov 1970), which enable the radial part of the equivalent
single-particle Hamiltonian motion to be separated out, thereby reducing the problem to one
of motion on a unit hypersphere.

When the fluid’s motion takes place without angular momentum and without vorticity, the
equivalent Hamiltonian motion was found by Gaffet (1996, 1998a, b) to possess the Painlevé
property and to be Liouville integrable, and it was conjectured that these properties might
be preserved in more general flows including rotation. As a first step towards a fully general
treatment, in this paper we have considered the case of rotation around a fixed axis, and we have
proven the conjecture to be correct provided that there is no vorticity. Owing to Dedekind’s
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duality (Dedekind 1860), the corresponding vortical flows without angular momentum are
found to be completely integrable as well.

The equivalent single-particle motion can in this context be reduced to Hamiltonian motion
on a unit 2-sphere, for which we obtain the second integral (denoted by I6), which is of degree
six in the momenta. For the case of a vanishing constant I6, we indicate a general method
for separating the variables, and illustrate it with an example (the case m = 5

48 ;α2 = 147
16 ).

The variables �1, �2 which make the system manifestly separable, are closely related (see
equations (6.10) and (6.11)) to the physical variables π and θ introduced in the text.

Finally, we obtain the solutions of minimal energy for the case I6 = 0 (and for any fixed
value of the remaining integral α2), and show that they are expressed by elliptic functions.

These results strongly hint at the complete integrability of the spinning gas flows described
by Dyson, with zero vorticity as the only constraint. We hope to be able to deal with this problem
in full generality in a future work. (The new integral I6 derived here turns out to admit a
straightforward such generalization, which will be presented in a forthcoming publication.)
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